

CELLOCATOR

Cello-CANIQ Evaluation and Integration

6.60

Cello-CANiQ – Driver Behavior with CAN connectivity.

November, 2013.

Objectives

By the end of this lesson you will be able to:

- Understand the new Cello-CANiQ Features
- Understand new Modular fleet protocol type 11.
- Setup your Cello-CANiQ evaluation environment and run short Demo
- Understand the CAN Editor tool
- Build your own CAN triggering example

Topics

- What new
 - New GNSS Supporting GPS and Glonass
 - CAN Connectivity
 - Automatic External Antenna control
 - oneWire Temperature sensors support
 - Extended Configuration memory 8K

GNSS

- The Cello-CANiQ Supports new GNSS Chip-Set based on STM 8088
- Both GPS and Glonass Systems Are Supported.
- Enhanced GNSS performance
- Embedded External Antenna Logic

CAN Connectivity

- The Cello-CANiQ has CAN Bus interface supporting OBD2 and J1939
- Simple OBD2 Harness used as Unit's Power Source
- User configurable Triggers and actions
- Pre configured FMS variables
- Pre configured OBD2 Standard PIDs
- Graphical user tool for CAN triggering.

Automatic External Antenna Control Logic

- The GNSS External Antenna Hw Support.
- External Antenna fault detection (Short / Disconnect)
- Automatic Internal or External Antenna selection to achieve optimal GNSS reception.
- The Selected Antenna is reflected by Fleet type 0 Message

2.2.3.19	Service and	Location Status	Byte	(byte 41))
----------	-------------	------------------------	------	-----------	---

Functions as the upper bit selecting the role of bytes 33 to 38 (CR200)	<u>IMEI</u> <u>Bit</u> <u>49</u>	<u>IMEI</u> <u>Bit</u> <u>48</u>	<u>CFE T</u> type t	<u>/pe</u> (se able be	e CFE low)	Trailer status indication: 0-Trailer Disconnected 1-Trailer Connected	Actual GNSS antenna selected (Int,=0, Ext.=1). Relevant only for Glonass variants.
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O

8 Kbytes configuration

- The Configuration Memory was expended to 8 Kbytes
- New Type 11 messages supports 8Kbytes programming and uploading
- Cello-IQ configuration was remapped

Fleet Type 11 Protocol

- Cello-CANiQ Fleet application protocol now supports new modular protocol type called Type 11.
- Type 11 fleet protocol extends the functionality of type 9 by supporting larger data and configurable application message structure.

Type 11 Structure

Type 11 has new header format with 16 bits allocated for message length

Typical CAN Type 11 Trigger event message

4D4347500B53B60100480146007E00000000 - Header 08060000121011400 - FW ID 0613000404020D5545A30310145703EC2C0000290000 - GPS Location Stamp 070700012C080B150A0D - GPS Time Stamp 1905001E04010000 - Trigger Event ID 0246001E0456C1F71909804004462C00008240047C0000085400400000008 3400400000008140045EBD32018440046427000086400400000087400400 00000884004000000BA -Variables Dump List

Typical CAN Type 11 Variable Dump List parsing

02 - Module ID
4600 - Module Length
1E04 - Operator ID
56C1F719 - PL Signature
09 - Number of variables
8040 - First Variable ID
04 - Variable length (4 Bytes)
462C0000 - Variable data : 0x00002c46
8240 - Second variable Id etc

Cello-CANiQ CAN Bus

- Cello-CANiQ Supports new CAN connectivity designed to widen the visibility of the unit to the vehicle's information sources.
- CAN connectivity supports both J1936 or OBD2 vehicle busses.

- CAN Interface: Physical and Data Link Layers: wire level and framer level message handling.
- CAN Handler: OBD2 Query/Response Manager, J1939 Message interceptor, maps CAN application messages into Cello-CANiQ "Variables".
- CAN Triggering: Configurable CAN triggers. User configurable relations between CAN variables values and resulted CAN Actions.
- CAN Actions: configurable type 11 message and GPIO sequence are generated as a result of true trigger criteria.

Cello-CANiQ Programmer/ CAN Editor

- The CAN Editor is an extended Programmer feature.
- The CAN Editor enables the user to select CAN variables, Define Triggers schemes and define CAN Actions.

Introduction Cello-CANiQ Programmer/ CAN Editor

- The CAN Editor is a graphical tool designed to configure CAN related information sources with user defined behavior.
- CAN Editor enable the user to select CAN variable and associate them with Operators. Operations will manipulate the CAN data and generate events.
- Operators are Logical data manipulation functions.
- Variables and Operators are associated by simple graphical "Click and Drag" action design to connect the variable to the Operator

Cello-CANiQ Editor: OBD2 View

Selecting OBD2 variable

Cellocator Division

Cello-CANiQ Editor:OBD2 Table view/Standard PID

- The editor allocates a "Parameter ID" for each selected variable.
- The user can control the PID's query polling time

Cello-CANiQ Editor: Adding Single Threshold

POINTER

Pointer Telocation Ltd

Cello-CANiQ Editor: Adding Event Operator

Pointer Telocation Ltc

Cello-CANiQ Editor: Adding Event Operator

The Generate Event Operator defines the following:

- Type Of Action : Message, Output, DFD (Infrastructure)
- Message Structure if message was selected as Action
- Outputs Patterns if Output was selected as Action

Cello-CANiQ Editor: Saving PL

 The diagram.xml file will be used by the Communication Center to parse the CAN type 11 messages. It must be saved in the following file location: C:\Program Files (x86)\Cellocator\Resources\XML\PL XML.
 Press: Actions/Reload Telemetry Files in the comm. Center to activate the file

Cellocator Division

Pointer Telocation Lte

POINTER

Cello-CANiQ Evaluation Kit: CAN emulator

Cello-CANiQ Evaluation Kit: CAN emulator

Cello-CANiQ Evaluation Kit: CAN Bus Injector

- Run pre-recorded CAN bus scenarios.
- The "CAN Bus Injector Application" downloads pre recorded CAN events towards the "CAN Emulator" unit via Serial protocol.
- The "CAN Emulator" emulates the Vehicle computer towards the UUT using its CAN Bus interface.
- "CAN Emulator" supports both OBD2 and J1939.

Cello-CANiQ Evaluation Kit: CAN Bus Injector

Install the Evaluation tools. In Windows 7, press the Start button and click the Cellocator sub folder. Click "CAN Injector" under the "CAN Tools" sub folder.

Cello-CANiQ Evaluation Kit: CAN Bus Injection Application Press

Select

Cello-CANiQ Evaluation Kit: CAN Bus Injection Application

Pointer Telocation Ltc

Cello-CANiQ Evaluation Kit: CAN Bus Injection Application

Cello-CANiQ Evaluation Kit: CAN Bus Injection Application

- After powering the emulator for the first time please run scenario file for at least 10 seconds to fill the Emulator unit with data.
- Move the play cursor to the file beginning by dragging the cursor to the right most place.
- Ignition off the UUT (using Vehicle Simulator), wait for event on the Comm.
 Center
- Ignition on (using Vehicle Simulator) UUT, Wait for event on the Comm. Center.
- Play the scenario file, The Communication Center should start showing type 11 messages with CAN trigger events.

Cellocator Cello-CANiQ – Let's take a ride

Cello-CANiQ – Driving Intelligence Delivered